Part Number Hot Search : 
DC110 PT801 FBL2031 0000X BU150 2SA838 680MZ LC78645
Product Description
Full Text Search
 

To Download HUF75939S3ST Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF75939P3, HUF75939S3ST
Data Sheet December 2001
22A, 200V, 0.125 Ohm, N-Channel, UltraFET(R) Power MOSFET Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE GATE SOURCE DRAIN (FLANGE)
Features
JEDEC TO-263AB
DRAIN (FLANGE)
* Ultra Low On-Resistance * rDS(ON) = 0.125, VGS = 10V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models * www.fairchildsemi.com
HUF75939P3
HUF75939S3ST
* Peak Current vs Pulse Width Curve * UIS Rating Curve
Symbol
D
Ordering Information
PART NUMBER HUF75939P3 PACKAGE TO-220AB TO-263AB BRAND 75939P 75939S
G
HUF75939S3ST
S
NOTE: When ordering, use the entire part number.
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified HUF75939P3, HUF75939S3ST UNITS V V V A A 200 200 20 22 16 Figure 4 Figures 6, 14, 15 180 1.2 -55 to 175 300 260 W W/oC
oC oC oC
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Tech Brief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTE:
1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS ID = 250A, VGS = 0V (Figure 11) VDS = 190V, VGS = 0V VDS = 180V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RJC RJA TO-220 and TO-263 0.83 62
oC/W oC/W
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
200 -
-
1 250 100
V A A nA
IGSS
VGS = 20V
VGS(TH) rDS(ON)
VGS = VDS, ID = 250A (Figure 10) ID = 22A, VGS = 10V (Figure 9)
2 -
0.102
4 0.125
V
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 2200 400 120 pF pF pF Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 100V, ID = 22A, Ig(REF) = 1.0mA (Figures 13, 16, 17) 117 64 5 9 24 152 83 7 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 100V, ID = 22A VGS = 10V, RGS = 4.7 (Figures 18, 19) 12 26 65 33 57 147 ns ns ns ns ns ns
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 22A ISD = 11A Reverse Recovery Time Reverse Recovered Charge ISD = 22A, dISD/dt = 100A/s ISD = 22A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 240 1500 UNITS V V ns nC
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 ID, DRAIN CURRENT (A) 25
20 VGS = 10V 15
10
5
0
25
50
75
100
125
150
175
50
75
100
125
150
175
TC , CASE TEMPERATURE (oC)
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
300
IDM, PEAK CURRENT (A)
100
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 VGS = 10V 175 - TC 150
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST Typical Performance Curves
200 100 100s ID, DRAIN CURRENT (A) 1ms 10ms 1 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 0.1 1 10 100 300 VDS, DRAIN TO SOURCE VOLTAGE (V) SINGLE PULSE TJ = MAX RATED TC = 25oC IAS, AVALANCHE CURRENT (A)
(Continued)
100
10
STARTING TJ = 150oC 10
STARTING TJ = 25oC
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.001 0.01 0.1 1 10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
40 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V 30
40 VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) 30 VGS =4.5V 20
ID, DRAIN CURRENT (A)
20 TJ = 175oC 10 TJ = 25oC 0 2 3 4 5 6 VGS, GATE TO SOURCE VOLTAGE (V) TJ = -55oC
10 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 0 1 2 3 4 5 6
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
3.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 3.0 2.5 2.0 1.5 1.0 0.5 VGS = 10V, ID = 22A 0 -80 -40 0 40 80 120 160 200 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX NORMALIZED GATE THRESHOLD VOLTAGE
1.2 VGS = VDS, ID = 250A
1.0
0.8
0.6 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST Typical Performance Curves
1.3 ID = 250A NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 C, CAPACITANCE (pF) 1000 CISS = CGS + CGD
(Continued)
10000 VGS = 0V, f = 1MHz
1.1
1.0
COSS CDS + CGD 100 CRSS = CGD 10 0.1
0.9
0.8 -80
-40
0
40
80
120
160
200
1
10
100 200
TJ , JUNCTION TEMPERATURE (oC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 100V 8
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 22A ID = 5A 0 10 20 30 40 50 60 70
2
0
Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0 0.01 tAV RG +
BVDSS VDS VDD
VDD
0V
IAS
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST Test Circuits and Waveforms
(Continued)
VDS RL
VDD VDS
Qg(TOT)
VGS = 20V VGS
+
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V
DUT Ig(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
tON VDS td(ON) tr RL VDS 90%
tOFF td(OFF) tf 90%
VGS
+
VDD DUT
0
10% 90%
10%
RGS
VGS 0 10%
50% PULSE WIDTH
50%
VGS
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. SWITCHING TIME WAVEFORM
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST PSPICE Electrical Model
.SUBCKT HUF75939 2 1 3 ;
CA 12 8 3.6e-9 CB 15 14 3.5e-9 CIN 6 8 2e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
10
rev 10 October 2000
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + EBREAK MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 17 18 DBODY DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG 6 8 + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.78e-9 LSOURCE 3 7 3.92e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 83.5e-3 RGATE 9 20 7.6e-1 RLDRAIN 2 5 10 RLGATE 1 9 57.8 RLSOURCE 3 7 39.2 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 10e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*38),2.5))} .MODEL DBODYMOD D (IS = 1.2e-12 RS = 5.5e-3 XTI = 5.5 TRS1 = 1e-5 TRS2 = 8e-6 + CJO = 12.5e-10 TT = 1e-7 M = 0.42) .MODEL DBREAKMOD D (RS = 2. 5TRS1 = 1e- 3TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 2.5e- 9IS = 1e-3 0N = 10 M = 0.9) .MODEL MMEDMOD NMOS (VTO = 3.14 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7.6e-1) .MODEL MSTROMOD NMOS (VTO = 3.68 KP = 100 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.76 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7.6 RS = 0.1) .MODEL RBREAKMOD RES (TC1 =1.52e- 3TC2 = -2e-7) .MODEL RDRAINMOD RES (TC1 = 9.8e-3 TC2 = 2.6e-5) .MODEL RSLCMOD RES (TC1 = 3e-3 TC2 = 1e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.3e-5) .MODEL RVTEMPMOD RES (TC1 = -2.8e- 3TC2 = 1.7e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -8.5 VOFF= -1) VON = -1 VOFF= -8.5) VON = -0.1 VOFF= 0.2) VON = 0.2 VOFF= -0.1)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2001 Fairchild Semiconductor Corporation
+
-
EBREAK 11 7 17 18 225 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
-
VBAT +
8 22 RVTHRES
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST SABER Electrical Model
REV 10 October 2000 template huf75939 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 1.2e-12, rs=5.5e-3, trs1=1e-5, trs2=8e-6, cjo = 12.5e-10, m=0.42, tt = 1e-7, xti = 5.5) dp..model dbreakmod = (rs=2.5, trs1=1e-3, trs2=-8.9e-6) dp..model dplcapmod = (cjo = 2.5e-9, isl =10e-30, nl=10, m = 0.9) m..model mmedmod = (type=_n, vto = 3.14, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.68, kp = 100, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.76, kp = 0.05, is = 1e-30, tox = 1, rs = 0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -8.5, voff = -1) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1, voff = -8.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.1, voff = 0.2) 10 sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.1) c.ca n12 n8 = 3.6e-9 c.cb n15 n14 = 3.5e-9 c.cin n6 n8 = 2e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1
LGATE RSLC1 51 RSLC2 ISCL
LDRAIN DRAIN 2 RLDRAIN
ESG + GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBREAK 11 MWEAK MMED EBREAK + 17 18
l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.78e-9 l.lsource n3 n7 = 3.92e-9
DBODY
MSTRO 8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.52e-3, tc2 = -2e-7 res.rdrain n50 n16 = 83.5e-3, tc1 = 9.8e-3, tc2 = 2.6e-5 res.rgate n9 n20 = 7.6e-1 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 57.8 res.rlsource n3 n7 = 39.2 res.rslc1 n5 n51 = 1e-6, tc1 = 3e-3, tc2 = 1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 10e-3, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.8e-3, tc2 = 1.7e-6 res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.3e-5 spe.ebreak n11 n7 n17 n18 = 225 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/38))** 2.5)) } }
S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B
RSOURCE
LSOURCE 7 RLSOURCE
SOURCE 3
15
RBREAK 17 18 RVTEMP
CB + EDS 5 8 14 IT
19
VBAT +
-
-
8 RVTHRES
22
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
HUF75939P3, HUF75939S3ST SPICE Thermal Model
REV 10 October 2000 T75939 CTHERM1 th 6 2.8e-3 CTHERM2 6 5 4.6e-3 CTHERM3 5 4 5.5e-3 CTHERM4 4 3 9.2e-3 CTHERM5 3 2 1.7e-2 CTHERM6 2 tl 4.3e-2 RTHERM1 th 6 5e-4 RTHERM2 6 5 1.5e-3 RTHERM3 5 4 2e-2 RTHERM4 4 3 9e-2 RTHERM5 3 2 1.9e-1 RTHERM6 2 tl 2.9e-1
th JUNCTION
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model T75939 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.8e-3 ctherm.ctherm2 6 5 = 4.6e-3 ctherm.ctherm3 5 4 = 5.5e-3 ctherm.ctherm4 4 3 = 9.2e-3 ctherm.ctherm5 3 2 = 1.7e-2 ctherm.ctherm6 2 tl = 4.3e-2 rtherm.rtherm1 th 6 = 5e-4 rtherm.rtherm2 6 5 = 1.5e-3 rtherm.rtherm3 5 4 = 2e-2 rtherm.rtherm4 4 3 = 9e-2 rtherm.rtherm5 3 2 = 1.9e-1 rtherm.rtherm6 2 tl = 2.9e-1 }
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2001 Fairchild Semiconductor Corporation
HUF75939P3, HUF75939S3ST Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E2CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM
DISCLAIMER
FAST (R) FASTrTM FRFETTM GlobalOptoisolatorTM GTOTM HiSeCTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM
OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench (R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM SILENT SWITCHER (R)
SMART STARTTM STAR*POWERTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogicTM TruTranslationTM UHCTM UltraFET (R)
VCXTM
STAR*POWER is used under license
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4


▲Up To Search▲   

 
Price & Availability of HUF75939S3ST

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X